Interior Point Methods for Large-Scale Linear Programming
نویسندگان
چکیده
We discuss interior point methods for large-scale linear programming, with an emphasis on methods that are useful for problems arising in telecommunications. We give the basic framework of a primal-dual interior point method, and consider the numerical issues involved in calculating the search direction in each iteration, including the use of factorization methods and/or preconditioned conjugate gradient methods. We also look at interior point column generation methods which can be used for very large scale linear programs or for problems where the data is generated only as needed.
منابع مشابه
ABS Solution of equations of second kind and application to the primal-dual interior point method for linear programming
Abstract We consider an application of the ABS procedure to the linear systems arising from the primal-dual interior point methods where Newton method is used to compute path to the solution. When approaching the solution the linear system, which has the form of normal equations of the second kind, becomes more and more ill conditioned. We show how the use of the Huang algorithm in the ABS cl...
متن کاملAn interior-point algorithm for $P_{ast}(kappa)$-linear complementarity problem based on a new trigonometric kernel function
In this paper, an interior-point algorithm for $P_{ast}(kappa)$-Linear Complementarity Problem (LCP) based on a new parametric trigonometric kernel function is proposed. By applying strictly feasible starting point condition and using some simple analysis tools, we prove that our algorithm has $O((1+2kappa)sqrt{n} log nlogfrac{n}{epsilon})$ iteration bound for large-update methods, which coinc...
متن کاملInterior Point Methods with Decomposition for Solving Large Scale Linear Programs
This paper deals with an algorithm incorporating the interior point method into the Dantzig-Wolfe decomposition technique for solving large-scale linear programming problems. The algorithm decomposes a linear program into a main problem and a subprob-lem. The subproblem is solved approximately. Hence, inexact Newton directions are used in solving the main problem. We show that the algorithm is ...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملOn Interior-point Methods and Simplex Method in Linear Programming
In this paper we treat numerical computation methods for linear programming. Started from the analysis of the efficiency and defficiency of the simplex procedure, we present new possibilities offered by the interior-point methods, which appears from practical necessity, from the need of efficient means of solving large-scale problems. We realise the implementation in Java of the Karmarkar’s met...
متن کامل